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Abstract

During the formation of animal organs, a single regulatory factor can control the majority of cell-
fate decisions, but the mechanisms by which this occurs are poorly understood. One such
regulator, the nematode transcription factor PHA-4, functions together with various cis-
regulatory elements in target genes to regulate spatial and temporal patterning during
development of the pharynx.
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Animal organs are composed of multiple varied tissues,

which must form coordinately in the right place and in the

right sequence during development [1,2]. A process as

complex as organ formation requires precision and selectiv-

ity of gene expression on a number of spatial and temporal

levels. Certain genes are expressed in all of the cells that will

constitute the particular organ, thus conferring an organ

identity upon a field of cells, while other genes are expressed

specifically in subsets of cells, thus allowing differentiation

of tissue types within the organ. Both of these kinds of gene-

expression program in organogenesis are coordinated and

regulated temporally so that the expression patterns follow

a precise sequence. It might be expected that the various

levels of control would require a large number of transcrip-

tional regulators, but an astonishing finding from more

than a decade of research is that complex patterns of cell-

fate determination and differentiation can be regulated by

single ‘selector’ genes [3,4]. A selector gene encodes a gene

regulator, typically a transcription factor, which

autonomously regulates cell-fate decisions within cells of

the nascent organ. An example is the Caenorhabditis

elegans transcription factor PHA-4, a member of the FoxA

family, which regulates formation of the foregut - or

pharynx - that pumps material from the environment into

the gut of the animal [3,5,6] . But how does a single tran-

scription factor orchestrate the diversity of gene-expression

patterns that emerges during organogenesis? This question

has lacked experimental elucidation until now. In two

microarray studies that build upon their previous work on

PHA-4 [7], Susan Mango and her associates at the University

of Utah have shown for the first time how a selector tran-

scription factor functions with a combination of cis-regula-

tory elements to regulate cell-fate determination both

spatially [8] and temporally [9].

Identification of cis-regulatory elements that
function in organ patterning
To identify genes that are primarily expressed in the

pharynx, Mango and colleagues [8,9] profiled transcripts

from the mutant strains par-1 and skn-1. Worms with par-1

mutations produce an excess of pharyngeal cells following

transformation of gut cells to a pharyngeal fate, whereas

skn-1 animals produce no pharyngeal cells owing to transfor-

mation of pharynx precursors into body muscle and epider-

mis (Figure 1). Comparing expression levels between par-1

and skn-1 animals increased the sensitivity of the analysis, as

differences in specific expression levels were much larger

than would be seen in a more traditional comparison, such

as between wild-type and skn-1 animals. Thus, genes that

would have been excluded in a traditional comparison, such

as genes that are expressed only in subsets of pharyngeal



cells or are expressed at very low levels, were readily

detected from the par-1 to skn-1 comparison.

The next stage of the analysis was the identification of regu-

latory elements within the promoters of the identified pha-

ryngeal genes. The pharynx-specific genes were grouped

according to their temporal and spatial expression patterns

and sequences in the proximal regions of the promoters of

grouped genes were analyzed for overrepresented sequence

elements (Figure 1). One factor that contributed to the

success of this stage was the recently completed genome

sequence of the related nematode Caenorhabditis briggsae

[10,11]; conservation of sequences between the genomes of

C. elegans and the closely related C. briggsae is often used to

make a case for their biological relevance [10]. When Mango

and colleagues [8,9] looked at pharyngeal gene promoters,

they found that the proximal 500 base-pairs of promoter

sequence were the most conserved between C. elegans and

C. briggsae genes; they therefore decided to limit their

analysis to these regions, thus increasing their chances of

identifying sequences motifs of biological relevance. 

Another important factor contributing to the success of this

stage was the use of the Improbizer algorithm [12], which

identifies sequence motifs that occur at significantly high

rates within a sample pool and which has the advantage that

a priori knowledge of the cis-regulatory sequence is not

required. Thus, when used on a population of genes associ-

ated with a particular biological activity, Improbizer can

identify novel sequences involved in gene regulation associ-

ated with that particular activity. 

The criteria used for subdivision of the pharynx-specific

genes into temporal and spatial classes were a critical aspect

of the experimental design. In the study by Gaudet et al. [9],

the pharynx-specific genes were subdivided into two tempo-

ral classes, depending on whether expression began during

mid-embryogenesis (‘early’ genes) or at the start of terminal

differentiation of the pharynx (‘late’ genes). This grouping

was used to identify sequence elements that were enriched

in one temporal group compared with the other. In the study

by Ao et al. [8], the total complement of pharyngeal genes

was subdivided into five groups on the basis of their spatial

expression patterns. Sequence elements that were particu-

larly enriched in the promoters of each group were identified

as potential cis elements involved in regulation of spatial

expression patterns. In both studies [8,9], the rich resources

available to C. elegans biologists, including databases of

expression patterns obtained from in situ hybridization

studies [13], three-dimensional ‘Topo’ maps for identifying

genes with shared expression patterns [12] and the wealth of

detailed studies on embryogenesis and larval development,

were crucial in creating spatial and temporal groupings of

genes that were analyzed with the Improbizer algorithm.

The results of these analyses were a set of sequence motifs

that were found to be overrepresented in promoters of par-

ticular subgroups of pharyngeal genes (Figure 1). But are

these motifs actually used for gene regulation in the develop-

ing worm? Many microarray and bioinformatic approaches

flounder when it comes to biological validation of the

sequence motifs identified, but Mango and colleagues [8,9]

took a multipronged approach that not only allowed them to

test the identified sequences for biological relevance but also

provided information about the function of each promoter

element. The initial validation test was for enhancer activity

of the identified motif in the context of a minimal exogenous

promoter driving a reporter gene. This assay allowed the

investigators to evaluate the regulatory element on three dif-

ferent criteria: whether the sequence was sufficient to acti-

vate expression and act as an enhancer, whether expression

was primarily pharyngeal, and whether it was sufficient to

confer a temporal pattern of expression. These tests not only

confirmed pharyngeal expression and temporal patterns of
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Figure 1
An outline of the experimental strategy used by Mango and colleagues
[8,9] to identify regulatory motifs that specify temporal and spatial
patterns of gene expression during pharyngeal development. (a) RNA
was isolated from worms with mutations in the par-1 or skn-1 genes,
which have excess or no pharyngeal cells, respectively. (b) The RNA
from the two strains was compared using a whole-genome microarray.
(c) Transcripts with high levels of expression in par-1 worms compared
with skn-1 worms were selected and sorted into groups according to
their temporal [9] or spatial [8] pattern of expression. For the temporal
groupings the genes were divided into those expressed early or late in
pharynx development; for the spatial groupings they were divided into
those expressed in the muscles, glands, pharyngeal marginal cells or
epithelium, plus those that were expressed in both the muscles and the
marginal cells. (d) The promoters of the genes in each group were
analyzed using the Improbizer algorithm to find sequence elements that
were significantly enriched in each group; these were named Early-1, M2,
and so on. A selection of these is shown.
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expression for candidate sequences, but in one case also

showed that an element acted as a repressor. In the second

round of validation tests, pharyngeal genes containing each

candidate regulatory element were identified, and site-

directed mutagenesis of the element was used to evaluate

whether loss of function led to loss of the temporal pattern of

expression. The native context of the identified temporal ele-

ments was further investigated by searching the promoters

of the ‘early’ and ‘late’ groups of genes for conserved cluster-

ing or combinations of temporal elements. The patterns

identified were also used in a bioinformatics search to find

additional pharyngeal genes that had not been identified

from the microarray experiments, further validating the bio-

logical relevance of the identified sequences.

A model for combinatorial transcriptional
control driving temporal patterning
The validation assays allowed Gaudet et al. [9] to address

the core question of their study: how the PHA-4 binding

sites and the temporal elements work together to regulate

the timing of gene expression during pharyngeal organogen-

esis. Using synthetic promoters with various combinations

of PHA-4 sites and the temporal cis-regulatory elements

they had identified, Gaudet et al. [9] established a model of

how transcriptional regulation drives temporal patterning

(Figure 2). The essence of this model is that, although no one

element is sufficient to drive expression, PHA-4 sites act

combinatorially with ‘early’ or ‘late’ elements to drive gene

expression at specific times. Gaudet and Mango [7] had pre-

viously shown that for many genes the binding affinity of

PHA-4 for its promoter element could determine the timing

of expression: genes with high-affinity binding sites were

expressed earlier in development and genes with low-affinity

binding sites were expressed later in development. These

two modes of transcriptional regulation, differences in

PHA-4 binding-site affinity and combinatorial activation of

expression, together seem to account for the temporal

expression patterns of the majority of pharyngeal genes. The

work by Ao et al. [8] implicates a similar, albeit less

complex, combinatorial system in spatial specification of

gene expression during pharyngeal morphogenesis. For

example, the M2 motif (see Figure 1) appears to confer

muscle-cell identity upon cells whose pharyngeal identity

has already been specified by PHA-4 activity.

Spatial and temporal patterning pathways may
use similar mechanisms
How universal is the model of combinatorial transcription

control proposed by Gaudet et al. [9]? Certainly, no

Drosophila biologist working on pattern formation would be

surprised by the findings of Mango and colleagues, and the

model describing the transcriptional control of temporal

patterning is striking in the resemblance that it bears to the

classical models of anterior-posterior patterning in the

Drosophila embryo [14]. The most obvious similarity is that

in both nematode pharynx development and fly anterior-

posterior patterning, gene expression, either at a particular

time or at a particular point in space, is specified by a unique

combination of regulatory molecules and cis-regulatory ele-

ments. These unique combinations are generated by the

same mechanisms in both systems; for example, there is

graded expression of regulatory molecules across axes, such
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Figure 2
A model for the temporal control of pharyngeal gene expression as
proposed by Gaudet et al. [9]. The temporal expression patterns of four
transcription factors are shown at the top, and the promoters of four
genes (A-D) that are expressed at different times during pharyngeal
development are shown below. EARLY1, LATE1 and LATE2 are the
putative transcription factors assumed to bind to the promoter elements
Early-1, Late-1 and Late-2 identified by Gaudet et al. [9] and shown in
Figure 1; the factors themselves have not been identified. Varying
combinations of PHA-4-binding sites and temporal cis-regulatory elements
drive expression of genes A-D at different times during pharyngeal
development. In this model neither the PHA-4-binding site nor any of the
temporal elements alone is sufficient for gene activation. Early expression
of gene A is driven by recruitment of PHA-4 (black circle) to a high-
affinity site (black box) along with recruitment of the putative EARLY1
factor (white circle) to an Early-1 site (white box). As PHA-4 is present at
low levels early in development, only a gene carrying a high-affinity PHA-4
site can efficiently recruit PHA-4 for activation. As PHA-4 levels increase
over the course of development, however, genes such as C that carry a
low-affinity PHA-4 site (hatched black and white boxes) can also be
activated. The onset of expression of gene C is primarily controlled by
the affinity of PHA-4 for its site rather than by the Early-1 site or the
EARLY1 factor, which may be expressed at stable levels throughout
development. Expression of gene B is derepressed when the putative
repressor LATE1 (light gray hexagon) falls to low enough levels to vacate
the Late-1 site (light gray box). The timing of expression of a gene
carrying a Late-1 site could be further retarded if the Late-1 site was
paired with a low-affinity PHA-4-binding site. Transcription of gene D is
activated late in development when the putative factor LATE2 (dark gray
circle) rises to high enough levels to be recruited to the Late-2 site (dark
gray box). The timing of expression of gene D could be advanced by
pairing the Late-2 site with a high-affinity PHA-4-binding site.

EARLY1

PHA-4

LATE2

LATE1

Early Late
Timeline of embryonic development 

T
ra

ns
cr

ip
tio

n 
fa

ct
or

 le
ve

ls
 

PHA-4 high-affinity 
site
+

Early-1 site 

PHA-4 low-affinity 
site
+

Early-1 site 

PHA-4 high-affinity 
site
+

Late-1 site

PHA-4 low-affinity
site
+

Late-2 site 

Gene:      A B C D



as the increasing levels of PHA-4 from early to late in

C. elegans embryogenesis and the increasing levels of

Hunchback protein along the posterior-anterior axis of the

Drosophila embryo. Furthermore, in both systems the

varying affinity of a transcription factor for its binding site

creates a finer gradation of responses, as described for

PHA-4 sites in pharyngeal genes (Figure 2) and as in the

case of Hunchback binding sites along the promoter of its

target genes, such as that encoding the transcription factor

Even-skipped [15].

Temporal patterning of the developing pharynx is also

similar to temporal patterning of another C. elegans organ,

the epidermis or hypodermis. The ‘heterochronic’ pathway is

a dedicated genetic pathway that regulates the timing of cell-

fate determination in the hypodermis during post-embry-

onic development in C. elegans [1]. As with the pharyngeal

pathway, temporally graded levels of key heterochronic mol-

ecules, many of which are transcription factors, specify the

timing of cell-fate decisions. However, unlike the pharyngeal

pathway elucidated so far, two of the heterochronic regula-

tory genes, lin-4 and let-7, code for microRNAs that act post-

transcriptionally to downregulate protein expression

[16-18]. It may be that temporal patterning of the pharynx

also involves undiscovered microRNA regulators; for

example, PHA-4 expression is regulated by the let-7 miRNA

[19]. Mango and colleagues [7-9] limited their search for reg-

ulatory sequences to promoter regions but, as pointed out by

the authors, it is also possible that expression is temporally

regulated through sequence elements in the introns and 3�

untranslated regions (UTRs) of pharyngeal genes, perhaps

through microRNA rather than protein regulators. One pos-

sibility is that microRNAs may themselves behave like selec-

tor factors. The lin-4 and let-7 microRNAs are both

expressed in a temporally graded manner during larval

development and appear to have a large number of regula-

tory targets, much like the selector transcription factor PHA-

4 [18,20]. MicroRNAs may use similar strategies of acting

synergistically with temporally regulated factors, in combi-

nation with differential affinities for their 3� UTR binding

sites, to control the timing of cell-fate decisions [20]. 

The work by Gaudet et al. [9] elucidates some of the tran-

scriptional strategies used to control the timing of gene

expression during C. elegans pharyngeal development.

Similar strategies may be used in other developmental path-

ways, such as the heterochronic pathway in the hypodermis.

The principles of the temporal control of development are

being elucidated primarily in C. elegans, but the striking

similarities between the mechanisms of temporal and spatial

patterning [1] and the strong conservation of the let-7

microRNA and pha-4 across animal phyla [5,6,20,21]

suggest that what is learnt in the lowly worm may well be

applicable to higher species, such as humans.
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